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FOREWORD 

Various regulations, such as, AFR 80-5 and 66-29, and AFSCR 80-1 
and 80-9 define policy for the reliability and maintainability (R/M) 
disciplines. Management specifications such as, MIL-R-275I+2 and 
MIL-M-26512, establish program requirements. In general, these doc- 
uments do not present "how to" information which permits accomplish- 
ment of the essential program requirements. 

The Technical Requirements and Standards Office (EST) is respon- 
sible for providing detailed guidance on R/M matters to all Electronic 
System Division (ESD) elements engaged in the acquisition of systems 
and equipment. 

EST has published ESD-TDR-6U-616, Handbook for Reliability and 
Maintainability Monitors, December 196U.  This document, while contain- 
ing specific techniques for demonstrating quantitative reliability, 
only briefly discussed the more involved problem of maintainability 
verification. 

It is the purpose of this report to present quantitative methods 
associated with the maintainability discipline. As such, the report 
supplements the material contained in ESD-TDR-6U-616. 

Since maintainability techniques are expected to change, as re- 
sults of current research programs become available, EST does not con- 
sider this document as a complete and final text. 

( JGEORGE HT ALLEN 
^ESTE 



ABSTRACT 

This document develops basic concepts for treating 
Maintainability quantitatively, with particular attention 
devoted to probabilistic aspects.  It focuses on the special 
characteristics of the Lognormal Distribution as they re- 
late to specifying and demonstrating numerical requirements. 
A catalog of Lognormal curves (both density and cumulative 
distribution functions) are included as well as recommended 
accept-reject criteria for Maintainability demonstration. 

REVIEW AND APPROVAL 

This Technical Report has been reviewed and is approved. 

?RANK E. BRANDEBERRY" 
Colonel, USAF 
Chief, Tech Rqmts & Stds Office 
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CHAPTER I 

INTRODUCTION 

In our view, the quantification and verification of Maintainability has 
been at a standstill since 1962 when Appendix A of MIL-M-2C512B was 
published. This, we feel, was caused by the fact that methods given in 
Appendix A went too far and too fast before basic concepts were established. 
Most practitioners, although they failed to grasp the recommended methods, 
were reluctant to show their ignorance and merely tried to "make a fit" 
usinp the "poorly constructed shoe." This problem was compounded by the 
fact that the highly complex lognormal distribution was chosen, and few 
people had more than a scanty knowledge of how to apply this distribution. 
One of our aims shall be to correct this unfortunate situation. 

In making the study contained in this report, our task seemed, at times, 
to be an impossible one. We started making progress when we realized that 
no less than three problems were being dealt with—quite often, simultane- 
ously—and it was not always easy to separate one from the others. One of 
these problems has been mentioned already, namely, that of explaining basic 
concepts, with particular emphasis on what must be known about the basic 
distribution (the lognormal, say) before one attempts to use it as a 
mathematical model. 

The other two problems are: 

(1) Most people are nurturing erroneous concepts which resulted 
from using methods that were not understood. These, of course, were held 
by those who had originally developed these methods. Hence, our explana- 
tions could not always follow a smooth road—we would often have to take 
detours to destroy false notions. 

(2) Most people confuse "estimation" with "demonstration."  (For 
this reason, we have used the word "verification" in the title of this 
report.)- This problem may be stated another way: Previous attempts to 
solve this problem gave "estimation" methods to solve a "demonstration" 
problem. Naturally, such fallacious thinking would have to be corrected 
before our recommended demonstration method could be understood. 

Since this is an educational problem as much as it is a technical 
problem, much of this report is written in tutorial style.  If, because of 
his background, the reader finds certain passages too elementary in nature, 
we beg his forgiveness and ask him to skip to those portions which hold 
his interest. Those same passages which he finds dull, will probably 
seem rather difficult to those readers who are still novices in this 
subject. 

To save the "expert" time, we shell describe the configuration of the 
remainder of this report. Chapter II, "Survey of the Problem," does .iust 
that. It first forces us to focus on the aspect of Maintainability that 
causes most of the difficulty, namely, the probabilistic aspect. After 



a brief discussion of the connection between Maintainability and Proba- 
bility (via the notions of "time-to-repair" and "average-time-to-repair"), 
Chapter II then points out what factors must be considered in order that 
this connection brings Maintainability and Probability into a close and 
intimate union. Chapter II concludes by bringing out those features of the 
lognormal distribution which make it a "natural" choice for the distribution 
function; but then Chapter III goes on to show why previous methods for 
specifying Maintainability requirements (in light of this distribution) were 
in error, and shows why this distribution does not adequately serve us as 
a design criterion. Specifically, Chapters II and III build up to the 
following main points: 

(1) Both the Exponential and Normal distributions must be rejected 
entirely as math models for Maintainability. 

(2) Although the lognormal distribution may appropriately describe 
systems and equipment, as they are usually built, it is too restrictive 
(has too many undesirable characteristics) to serve us as a design criterion 
for future use—the way we want them to be built. This is especially true 
for the new "automatic switch-over" type systems. 

(3) Lacking evidence to the contrary, we may be obliged to specify 
requirements in light of the lognormal distribution, in which case the 
"Mean" and the "95th percentile'" are not enough to fix the nature of this 
distribution and should not be used in specifying requirements in contracts, 
as was previously recommended. It is specifically recommended that the 
Median and the 90th percentile be used to specify requirements. It is 
recognized, however, that Availability requirements are often used to dictate 
Maintainability requirements and,under these conditions,only the Mean is 
known. Although this does not change the fact that the Mean does not give 
the contractor sufficient guidance, we have presented, in Chapter III, a 
table for translating a requirement for the Mean into a requirement for the 
Median and the 90th percentile. 

Chapter III contains the main results of this study; hence, this chapter 
serves as an introduction to Chapter IV, which then treats the problem of 
demonstration in view of (and in spite of) the special characteristics of 
the lognormal distribution. Specific decision (accept-reject) criteria are 
presented as well as methods for arriving at quantitative Maintainability 
requirements which are compatible with the given accept-reject criteria. 
Appendix A contains many graphs of the lognormal distribution (both the 
density and cumulative distribution function) which, we believe, are not 
available anywhere else. 

Other authors have called the 95th percentile "Mmax." In this report we 
deal with the 90th percentile which we call Xmax, but everything we say about 
Xmax shall hold, in substance, for Mmax as well. 



It should be noted that "-time-to-repair" is treated as an undefined 
term throughout this report. This means that we hope our findings would 
appertain regardless of the kinds of "down-time" that would be included in 
the "time-to-repair" statistic. It also means that we hold to the belief 
that "time-to-repair" must be defined by the procuring activity for each 
procurement in cognizance of such factors as: 

(a) Those aspects of Maintainability which are controllable by 
the contractor and within the purview of the contract. For example, for 
certain procurements (not strictly "off-the-shelf") the amount of develop- 
ment that is consistent with the cost-framework provided for that procure- 
ment is limited. Thus, it may not be reasonable to include "all" types 
of downtime; i.e., only diagnostic time, time to isolate, actual repair or 
replacement time, and check-out time could be included in our definition 
of "time-to-repair". In other cases, we may feel that it is reasonable to 
include other kinds of "down-time" such as travel time, as part of our 
definition of "time-to-repair". 

(b) Where and when the demonstration is to take place. If it is 
important to gain assurance that Maintainability requirements are satisfied 
before the equipment is shipped and installed at the operational site, then 
in-plant demonstration must take place. Any aspects of "down-time" which 
cannot be duplicated in an in-plant environment would have to be excluded 
from out "time-to-repair" definition. 

Some have tried to resolve the "definition dilemma" by placing adjectives 
in front of the word "downtime", such as "corrective maintenance downtime" 
or "active corrective maintenance downtime", etc. This does not solve the 
problem at all—it merely serves to make the procuring activity not mindful 
of his responsibility to precisely define these words. It is our opinion 
that such adjectives should be dispensed with altogether—the added jargon 
may be useful for conversational purposes but it is simply added confusion 
in a contractual situation. 

Another advantage in leaving "time-to-repair" undefined is that it may 
turn out that what we say about this statistic may also hold for "time- 
be tween-maintenance actions" (MTBM) for those systems/equipment where 
preventive maintenance is an important factor. Although this report does 
not explore this possibility, it is easy to see that our demonstration method 
could apply to MTBM as well. 

Before leaving this introduction we would like to give some final 
thoughts that lay in the back of over minds, as we made this study. We 
believe that previous attempts at the quantification and verification of 
Maintainability tried to follow the same road that was travelled so 
successfully in the discipline of Reliability. For Reliability, this road 
had the following superficial appearance'': 

''statistical terminology used in this introduction is fully explained in 
subsequent chapters. 



(a) Choose a random variable (time-between-failures). 

(b) Select a probability distribution which governs the behavior 
of that random variable (Exponential Distribution). 

(c) Specify quantitative requirements in terms of the key parameters 
of that distribution (the mean or mean-time-between-failures). 

(d) Use standard statistical procedures to verify those stated 
requirements (that is, the key parameters of the distribution). 

Since the "time-to-repair" statistic fill the bill as a random variable, 
the above road-map seems to tell us that all we need is a probability 
distribution to reach our destination. Two such distributions have been 
suggested, and even used, namely, the Exponential Distribution and the Log- 
normal Distribution (occasionally, we have seen references to the Normal 
Distribution also). 

We feel that this report shows that the problem is somewhat more complex 
than stated above. We hope to prove that even if the "distribution problem" 
was solved (and some are attempting to gather empirical evidence for this 
purpose) there are conceptual difficulties which need to be worked out—and 
not camouflaged by mathematical "juggling". Moreover, we feel that these 
problems are not going to be solved by statisticians alone—but by engineers 
since they arise when we try to marry our mathematical model to the real- 
world Maintainability problem. Roughly stated, the critical problem is 
this: How do we get contractors to deliver us a "better" product, from a 
Maintainability standpoint, within the cost framework provided for the 
procurement? 

People tend to forget that these problems were once present in the 
development of Reliability (in fact, some' say that they are still there). 
Efforts to explore these conceptual difficulties or to develop an appropriate 
mathematical model for Maintainability have been, to our knowledge, 
practically non-existent. We hope that this report will help to remedy 
this situation by consolidating certain widely held notions, while destroying 
other notions which are either erroneous or are retarding progress. However, 
if this report merely serves to inspire others to express their ideas and 
proposed solutions, we shall feel quite satisfied. 

iFor example, Proschan, Barlow, and others are making a strong bid to 
replace the concept of a constant failure rate by a monotone failure rate, 



CHAPTER II 

SURVEY OF THE PROBLEM 

1.  Preliminaries: 

Before we start talking about "Maintainability" it might be wise to 
explain what we mean when we use the word. We shall not attempt to give 
a universal definition - one that is advocated whenever this term is used. 
If we gave such a definition, its generality would render it useless for 
demonstration purposes.  For example, AFR 66-29>   dated 27 April 196h,   de- 
fines Maintainability as 

"A characteristic of design and installation which is expressed 
as the probability that an item will conform to specified con- 
ditions within a given period of time when maintenance is per- 
formed in accordance with prescribed procedures and resources". 

This statement has the appearance of being deliberately broad - in fact, 
at first glance it seems to be applicable to any design characteristic. 
If we tried to use this definition for specifying (and subsequently dem- 
onstrating) Maintainability requirements, we would probably be frustrated 
by the number of words or phrases that are left undefined.  For example, 
much groundwork is needed before the word "probability" has an unambiguous 
meaning.  Moreover, in particular circumstances certain phrases may not 
have any significance at all; to wit, "period of time" for a continuously 
operated radar system. 

These remarks should not cause the reader to lose faith in Air Force 
regulations.  At best, regulations merely give the general usage of cer- 
tain technical terms, not precise definitions.  The so-called definition" 
is there for our consideration and deliberation; it is not to be taken 
literally.  It is not even expected that one must provide a counterpart 
for each phrase appearing in the definition. 

What is done instead? We shall not keep the reader in suspense any 
longer.  For particular procurements, one must first consider Maintain- 
ability in a broad sense (considering for example, its impact upon Avail- 
ability) in order to find crucial elements.  These elements are derived 
through carefully considered intuitive judgment, as well as experience 
and knowledge gained on systems or equipment of like kind, being partic- 
ularly careful to choose elements that may be precisely defined.  These 
crucial elements are often peculiar to that equipment only and may not 
cover the entire Maintainability picture.  For example, suppose the fol- 
lowing statement appeared in a work statement: 

"The operational equipment shall be designed for ease of maintenance". 

Although this statement covers a big chunk of Maintainability, and seems 
to be an appropriate statement for all procurements, it doesn't say what 
exactly is required; hence we may have difficulty demonstrating that this 
requirement has (or has not) been met.  Now, consider the following ap- 
proach: 



"The operational equipment shall be designed for ease of maintenance, 
containing as a minimum the following features: 

(i) Components or units listed in Section  , whose expected 
failure rate exceeds   hours must be accesible for re- 
pair without requiring the removal of other components 
(which must be replaced after correcting the malfunction) 
unless such removal can be made in less than   minutes. 

(ii)  Each functional module (as defined in Section  ) must 
contain at least one test point which will provide for the 
measurement of the critical parameters of that module. 

Here, we are assuming that each of these items is practical and important 
for the system being considered.  For that system, these specific items 
may not cover the full spectrum of Maintainability as expressed by the 
phrase "ease of maintenance;" however, we have focused upon certain cru- 
cial elements and we have cited specific requirements that are demon- 
strable either during design reviews, in-plant testing, or field testing. 

We need not add anything further about the demonstration of "deter- 
ministic" requirements such as (i) or (ii) above.  Compliance (or non-com- 
pliance) with such requirements is obvious; e.g., either a test point 
exists for each functional module or it doesn't. 

Most of this report shall be concerned with "observables" that are 
somewhat more complex - that is, observables that are more closely allied 
to the definition given in AFR 66-29.  More specifically, in subsequent 
paragraphs, we shall try to develop certain techniques for dealing with 
the concept of "average-time-to-repair", which is directly related to the 
notion of "probability". 

For more information concerning the deterministic aspects one may 
consult MIL-STD 803 and ESDP 80-9- 

2.  Probabilistic Aspects of Maintainability: 

We find that deterministic aspects are not enough to insure that equip- 
ment has the required degree of Maintainability.  The following question 
cannot be answered deterministically:  "How long on-the-average does it 
take to fix the equipment once it fails?"  In fact, before attempting to 
answer this question, one must decide what is meant by "average". 

Anyone who has had dealings with "averages", or has taken just one 
course in elementary statistics, should know that such descriptions can be 
misleading.  There are several kinds of averages:  the arithmetic mean, 
the geometric mean, the median, the mode, to mention just a few.  A funda- 
mental problem is to choose the right one. 

However, we cannot make an intelligent selection without first con- 
sidering the question: 

"How are the various values of repair-times distributed probabil- 
istically?" 



This is quite a mouthful.' - so let us try to explain what this means. 
To do so requires some knowledge of probability theory; hence, we must 
make a slight detour to be sure that the reader is "in-tune" with us. 

We start by considering a curve f, shown below, and a function A. 
The function A gives the area under the curve f between certain limits 
on the t-axis (time axis). 

A(ti,te)  = Area of 
shaded portion 

t-axis 

Now, suppose the total area between the curve and the t-axis is 1.  Then 
(see picture below) the area between 0 and t* is equal to 1, and if 
ti ^ 0 and if t2 < t*, then the area between ti and t2 must be less than 1; 
that is A(ti,t2) < 1 in the picture shown above. 

f(t) 

axis 

Now, suppose we also knew that A(ti,t2) could be converted to a probability 
statement as follows: 

A(ti,te) = 
[The probability that a repair| 
time t will take between 
ti to tz  hours to complete 



Symbolically, we could write the above probability statement as 

p/ti £ t £ t2\  so that 

A(ti,ts) = P(ti ^ t S t2J 

would then know, as depicted below, that A(0,t') = p/o S t S t'j 

f(t) 

p(t ^ t'} = Area of 
shaded portion 

We 

and since we know that the lower limit of a repair time is at least 0, 
we may state p{b I t S t'| more simply as p/t S t'}.  In words, the area 
under f from 0 to t' is equivalent to the probability that an arbitrary 
repair time will take less time than t', which establishes what is com- 
monly called a "cumulative distribution function", which we shall call C. 
More generally, the function C, for any function f, gives the cumulative 
area under the curve f from (- <») to time t'.  Thus; 

C(t') =    A(- oo, t') 

t' 
=  /   f(t)dt 

'-'-co 

= p(t St'} 

The curve f, which C is dependent upon, is usually called a "probability 
density" function.  The variable t has a special name also   "random 
variable". 

The cumulative distribution function always has the following form (which 
may be shifted right or left, or climb more rapidly, depending on the 
function f): 

3 



C(a) = P-(t § a\ 

= /   f(t)dt = .1+5 

t' -axis 

and exists for any density function f. Note that this function is non- 
decreasing, that is, P^t ^ t'} gets larger (closer to l) as t' gets 
larger (since, with larger t', we are taking more area under the curve f). 
The reader should also observe that numerical values have been indi- 
cated on the vertical scale showing that C(t') is always between 0 and 1. 
For the density function f, the values on the vertical scale have no 
probabilistic or physical meaning, since we are merely interested in the 
area under the curve; that is, the vertical scale simply gives values of 
f(t) which make the area under the curve equal to 1. 

3.  Some Required Properties of the Density Function: 

Once we know the function f or C we then say that we know how our 
random variable (repair-times) is distributed probabilistically.  When- 
ever statistical data exhibits "chance fluctuations", (i.e., any particular 
result is unpredictable) it is essential that we consider the distribution 
that gives rise to these results in order to give meaning to our concept 
of "average value".  Our present aim shall be to determine the general 
shape of the density function for electronic equipment (or, rather, what it 
should be), recognizing, of course, that there will always be exceptions 
to any rule that is established.  Hence, we must now devote our discussion 
to the selection of a "generalized" density function1, with particular 
emphasis on the reasons therefore.  We shall develop the notion of "average 
value" as the discussion proceeds.  Hopefully, this will remove some am- 
biguities when the expression "average-time-to-repair" is used. 

The function f that was illustrated previously does not meet our needs 
for several reasons.  First, we do not have the mathematical expression 
for this curve which causes trouble when we make analytical investigations. 
Second, for nearly any interval,on the t-axis (however far to the right it 
may be) there is a chance (however small) that a repair time could fall 
within that interval.  Occasionally, equipment might require several weeks 
before the cause of a malfunction is found2.  Our previous curve f, however, 

1 The comments of this paragraph shall be made precise after we introduce 
some terminology; namely, that of a "class of functions". 

2 We are assuming, of course, that our "repair-time" definition includes 
diagnostic time. „ 



does not go beyond t*. However large t* is, it might not be large 
enough. Happily, this defect is easily corrected by using a certain 
mathematical concept; namely, the concept of a curve "asymptotically 
approaching" the t-axis (see picture below): 

asymptotic portion 

Thus, no matter how far to the right we move on the t-axis, our curve 
never touches the t-axis; but for any interval of fixed size, the further 
we move the interval to the right (in the decreasing portions of the 
curve) the smaller the area under the curve will be.  In Calculus we 
learn that there are many curves of this type, which can be expressed 
mathematically, having a finite amount of total area beneath them.  With 
only minor modifications (i.e., multiplying such functions by an appro- 
priate constant in order to make the area under the curve equal to l), 
any of these functions would qualify, mathematically speaking, as our 
density function.  One of our major problems is to find a class of func- 
tions, which best describes equipment encountered in ESD procurements.  We 
shall now discuss some examples in order to clarify what we mean by "class" 
Consider the function defined by the rule 

V*> a /2TT 2ae 
(t-u); 

where t represents "time-to-repair", and e = 2-71828...etc. 
well known "normal curve", having a bell-shape appearance 

This is the 

time to repair 

t-axis 

i.e., it is symmetrical about its highest point.  The two symbols u and a 
that appear in the mathematical expression are constants which, when known, 
"fix" the "location" and "specific shape" of the curve as follows.  The 
constant or parameter p tells us exactly where (on the horizontal scale) 
the point of symmetry occurs.  The other parameter a  tells us how "flat" 
the curve is; i.e., is the curve highly concentrated about u or is it 
rather "spread out"?  (The technical terms for u and a  are the "mean" and 
"standard deviation" which shall be given precise definitions later). 
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Clearly, \i  is most representative of our concept of average-time- 
to-repair as far as the normal curve is concerned.  In fact, we shall 
find that our concept of "average" is always represented by a "location 
parameter". We should also observe that changes in u or a give dis- 
tinctly different curves, and bring significant changes to our cumulative 
distribution function which in this case is denoted by 

V^ L 
r 

f
N(t)dt 

Thus, fw(t) describes a collection of curves, each having a bell-shape 
appearance.  We shall refer to such a collection as a "class of functions"; 
for this case it would be called the normal class. 

h.     Undesirable Properties of the Normal Class: 

Can the normal class be used to represent our density function for 
time-to-repair? Does it appropriately describe the probabilistic be- 
havior of our repair-time statistic?  It would be nice if it did, since 
we would have no trouble in giving meaning to our concept of "average" 
repair-time...it couldn't be anything else but u.  However, other problems 
arise, which might cause extreme amounts of difficulty.  For one thing, 
although the normal curve has a right-hand asymptote, which is a desir- 
able property, we find that it also has a left hand asymptote which is 
quite undesirablel     This is depicted below. 

left hand 
asymptote "\ 

right hand 
f  asymptote 

Realizing that negatively valued repair-times have no physical meaning, 
we would not like to see any area under the curve to the left of the ver- 
tical axis.  The reason this feature is distasteful to us is that for a 
given a, the lower the value of u the more area will have to be "thrown 
away".  What this means in a real situation cannot be mentioned at this 
point in our discussion - we will return to this point later when we dis- 
cuss the development of a demonstration model against which test results 
must be compared. 

The normal class has other problems which will become obvious in the 
following example.  Let us suppose that 1.5 hours is a minimum "average- 
repair-time" requirement for a particular radar set.  In addition, we 
would like to specify requirements for certain percentiles, e.g., that 
25 percent of total repair actions will take less than 1 hour and 98 per- 
cent will take less than 2.5 hours.  Is there a normal curve that has these 
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features? We shall show that these requirements are talking about a 
non-normal shape, which will bring out the fact that our preference for 
one class of functions, rather than another, is based mostly on two 
features:  (l)  the asymptotic properties and, more important, (2) the 
shape that results from varying the parameters.  Let us now examine 
some functions in the normal class, all with 1-5 hours as their mean, 
with a =  .25, .5, and 1, as depicted below: 

NOTE:  For those mathematically oriented, we mention here 
that the points of inflection, of the normal class, 
(d2y/,,2 = 0) are always at ± a  distance from the 

mean (1.5), and that 68%  of the area falls between 
these limits. 

We now point out that for the normal class, 95% of the area must fall be- 
tween i 2a  units distance from mean, with ± 3a corresponding to 99%" area. 
Thus, for a mean of 1.5 hours, if the normal class is applicable, we see 
that a requirement that (say) 97 l/2%" of all repair times be completed 
in less than 2.5 hours would mean that only 2 l/2%" could take less than 
• 5 hours, and only 13-5$ would be completed in less than 1 hour.' 

This is quite unrealistic.  Our intuition would cause us to believe 
that equipment could be designed to "look good" at both ends of the scale. 
Hence we seek a class of functions that has such an appearance, as the 
shaping and location parameters are varied.  If such a class exists, it 
will better serve us as a design criterion, and subsequently as a demon- 
stration model. 

5.  Undesirable Properties of the Exponential Class: 

One possible candidate that has been suggested from time to time is 
the so-called "exponential class" with density function: 

f, (t)  = —  e"^ 

with shape: 
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right hand 
asymptote 

|i (mean) t-axis 

We note that this function "looks good" at both ends; however, we shall 
find that it is "too-good to be true".  In order to speak precisely 
about this and subsequent classes of functions, we require certain def- 
initions of terms which completely determine any density function f(z). 
These are: 

The Mean: M{z} x f(x)  dx 

The Variance: 
r»oo /where     \ 

V(z>  = /   (x-n)2  f (x)  dx, ^  u = M{z\ J 

The Standard Deviation:  S{z\ = Jv{z\ 

The Median: p(z] is that value t at which 

/   f(x)  dx = 

The Mode: M /z"y is the value at which f(z) attains a max- 
imum. 

When it is perfectly clear what random variable we are talking about, we 
shall not use the cumbersome notation, M{z}, prescribed above.  Instead, 
we shall abbreviate the notation as follows: 

M {z} 

V{z} 

S{z) 
M*{z"y 

Mo(Z> 

= H 

= cr£ 

= o 

= 9 
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It should be observed that for the normal class, the mean, median, and 
mode were all equal to each other. 

Returning now to the exponential class, 

f
E <*> • -jr e" VM 

one easily verifies that the mean is u, that the variance, a2, is equal 
to \x  (hence the standard deviation, a, is equal to J\l),   and the median, 6, 
is equal to (-u)(ln-5), where "in" denotes the natural logarithm function. 
The mode, of course, is zero, a feature which leads to certain difficulties, 
as will be seen shortly. 

Since a  and 6  are both functions of u alone, knowledge of any one of 
these parameters is equivalent to knowledge of the other two; therefore, 
one usually thinks of the exponential class as a "one-parameter" distri- 
bution.  Whether this characteristic is a realistic stipulation for the 
"time-to-repair" statistic is highly questionable, despite the simplicity 
that results from having only one parameter to worry about. 

On the other hand, for this density function we have at least two "loca- 
tion parameters", u and 9,   which have meaning.  Which one is most repre- 
sentative of the "average" value?  Perhaps it matters little which one is 
chosen, since fixing one fixes the other.  In the discipline of Reliabil- 
ity, where the exponential class is widely used, the mean has won out over 
the median.  In fact, one reason for the occasional use of the exponential 
function for Maintainability was that it seemed to be a "natural' choice in 
view of the following correspondences: 

Event of 
Interest: 

Random 
Variable: 

Distribution: 

Key Parameter: 

Mathematical 
Definition: 

Reliability 

Failure 

Time-Between-Failures 

Exponential Class 

Mean-Time-Between-Failure, u, 
or Failure Rate, l/u. 

R(t)  = e" */n 

'Probability of        "| 
- failure-free oper-f 
:ation for time t j 

Maintainability 

Repair 

Time-To-Repair 

Exponential Class 

Mean-Time-To-Repair,   u, 
or Repair Rate,   l/u- 

M(t)     =     1  -  e~  tU 

Probability of ^ 
< completing a   '<• 
repair by time t; 

What could be simpler? We have now, supposedly, quantified maintainability, 
and may now use the statistical procedures (already developed in the field 
of Reliability) for its measurement.  What could go wrong? 
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Quite a few things could go wrong.  The fundamental problem is this: 
One must do much more than create an idealized model of a physical situ- 
ation.  The model must pertain to the problem at hand, and there should 
be some empirical evidence to justify the chosen class of functions.  In 
addition to empirical evidence, there should be intuitive reasons for 
the choice; or, stated another way, there should not exist good intuitive 
arguments against the chosen class.  There are three such arguments 
against choosing the exponential class for Maintainability: 

(l)  For the exponential class, the probability of completing a 
repair within the next t hours is the same no matter how much time has 
elapsed since the repair action was started. Very few people would 
accept the truth of this statement.  In fact, some people question its 
validity for Reliability as well, for which the statement reads:  The 
probability of no failures in the next t hours is the same no matter how 
much failure-free operating time has been accumulated.  This feature of 
the exponential class, which is not present in the other classes that we 
shall consider, may be stated in mathematical terms as follows: Define 
the "repair rate function", h, by the relation 

where f is the density function and C is the cumulative distribution func- 
tion.  It will be found that h(t) is a constant function for the exponen- 
tial class, but is not constant for the other classes of functions that 
we will consider. 

(2) For the exponential case, equipments with the same mean- 
time-to-repair, have exactly the same distribution of repair times.  In 
other words, the mean-time-to-repair completely describes the distribution 
and it would not be possible for equipments with the same "mean" to have 
a significant difference in their variances.  This feature, even more so 
than (l) above, runs head-on with the intuitive judgment of most people. 

(3) Since the exponential density function takes the following 
form: 

x t = time to repair 

we have a considerable amount of the total area to the left of the point x 
shown above (the shaded area).  Since this area gives the probability that 
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a repair will be completed in less time than x, we see that the exponen- 
tial function would often give undue weight to short repair times; i.e., 
one must move x rather close to the origin before the probability of 
completing a repair in less time than x becomes small. 

6.  Desirable Properties of the Lognormal Class: 

Some might say that such problems are trivial - that they are immed- 
iately solved by changing the function to one that coincides more closely 
with people's intuitive tendencies.  As a matter of fact, such a function 
has been found.  It is backed by both empirical evidence and intuitive 
judgment, and the three problems mentioned above are no longer present. 
Chapter III discusses this function in detail, and Appendix A contains 
several graphs for various parameter values.  Typically, the curve has 
the following appearance: 

asymptote 

Mode Med. Mean 

that is, it starts at f(t) = 0, and once it starts its climb, it does so 
rather rapidly until reaching its highest point; but after attaining its 
maximum, the descending portion is never as steep as the ascending portion. 
Thus there is no left hand asymptote, but a right hand asymptote exists, 
as desired, and (depending on the standard deviation, of course) one does 
not have to move x very "close" to zero (see picture above) before the 
area from zero to x is small (and consequently the probability of com- 
pleting a repair is less time than x is small). 

The above picture also shows that there are no less than 3 location 
parameters, the mean, median, and mode, one of which is to be chosen to 
represent the "average value" (average-time-to-repair) and they always 
have the .following relationship: 

M(t\>  M*- t>> M -V- v , 0 

that is, the mean is greater than the median which, in turn, is greater 
than the mode• always, no matter what the standard deviation may be.  We 
might find that neither of these location parameters is best representa- 
tive of the "average value" for all occasions; that is, the "best one" 
may vary with (say) the intended use of the equipment or other factors. 
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7-  Summary: 

Now that our survey has led us to the Lognormal class which, on 
the surface at least, exhibits no undesirable properties, it may seem 
that our task is completed.  Actually, our study begins at this point 
because of the "not-so-obvious" shortcomings of the Lognormal class 
which shall be covered in detail in the next chapter. 

Hence, this chapter has merely surveyed the problem up to the point 
where our efforts began to bear fruit.  It is therefore rather easy 
to summarize the present chapter - it told us that our problem reduced 
to making a determination of (l) how to specify requirements in light 
of the Lognormal distribution and (2) how to verify that such require- 
ments have been met.  In the process of trying to answer these questions 
we derived some surprising, if not important, results all of which are 
contained in the next chapter. 
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CHAPTER III 

THE LOGNORMAL DISTRIBUTION - SOME IMPORTANT RESULTS 

1. Practical Considerations; 

Although we have removed most of the difficulties associated with the 
normal and exponential class, we have introduced new problems which partly 
arise from having to deal with a two-parameter distribution. Before this 
distribution is completely specified, we must know at least two of the 
following: the Standard Deviation, the Mode, the Median, or the Mean. 
There is also an educational problem, since elementary statistical courses 
and textbooks do not usually treat this distribution and its special 
properties are, generally speaking, not known by those responsible for 
Maintainability programs. Therefore, the remainder of this chapter shall 
attempt to describe these special properties—in the process we reinterpret 
these properties from a Maintainability viewpoint, particularly with regard 
to their effect on specifying and subsequently demonstrating quantitative 
requirements. 

Because practitioners in the field have become accustomed to specifying 
the Mean and an upper percentile (e.g., the 95th percentile), we shall 
explain the characteristics of the Lognormal class in terms of such 
quantities. Let us first describe what we are talking about via the 
following illustration: 

Median = 50th percentile 
Xmax = 90th percentile 

5°*  I    \ A„ 
of area I /- 1 0% of area 

i     i  -ii-  rr.T-*_ 
t    "v t 

Median Mean     Xmax 

The Median is called the 50th percentile because 50% of the area under 
the curve lies to the left of that point. Similarly, the expression 
"Xmax" is used to denote the 90th percentile. We may say, equivalently, 
that the probability of completing a repair in less time than the Median 
value is 50%, and the probability of completing a repair in less time than 
the Xmax value is 90%. Some may prefer to think of Xmax in terms of 
"relative frequency"; that is, over the long run, only 10% of repair actions 
will take more time than the Xmax value. 

It should be understood that the Mean value has no simple relationship 
with the notion of area (the cumulative distribution function); that is to 
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say, one must know much more than the Mean value to derive probability- 
statements of the kind just mentioned. It might be suspected, then, that 
for the Lognormal distribution, the Median and Mean should not simply be 
thought of as "measures of location"—they seem to be telling us quite 
different things about the nature of the curve. While the Mean (alone) may 
tell us more about the mathematical properties of the curve (i.e., the 
density function), the Median (alone) tells us more about the probabilistic 
nature of the curve (i.e., the cumulative distribution function). Since 
there are severe restrictions on the probabilistic nature of the curve to 
the left of the Median (as pointed out in Chapter II) knowledge of the 
Median value is almost equivalent to knowledge of this entire portion of the 
curve. Thus, it appears that if Xmax was known, which tells us quite a bit 
about the right hand portion of the curve, practical people would prefer to 
know the Median value, rather than the Mean value, if only one of these 
could be obtained. We shall provide more justification for this statement 
in the sequel. 

We will show, in fact, that we give prospective contractors much better 
guidance when we specify the Median and Xmax values, instead of the Mean 
and Xmax values. 

The Mean is best described by thinking of the plane area under our 
curve as a visual representation of a unit mass (of uniform density) which 
is bounded by the curve and the horizontal axis. With this conceptual 
framework in mind, the Mean is that point, on the horizontal axis, at which 
this mass would be in perfect balance. In this way we see that the Mean is 
rather heavily affected by the asymptotic portion of our curve; that is, 
long repair times, even though they may rarely occur, heavily affect the 
Mean value. 

Because there is no simple relationship between the Mean value and the 
cumulative distribution function, the curves in the Appendix were developed 
by varying the Median values and the Standard Deviation. However, the 
graph on the next page (Figure 1) gives us all the information we shall 
need to analyze how changes in the Mean value affect given curves also. 

We are now ready to explain the most important findings of this study 
which are mostly derived from analyzing the Median curves in Figure 1. For 
this reason, we suggest that the reader become intimately familiar with 
Figure 1—what it represents and how it was derived. The next two para- 
graphs explain how Figure 1 was constructed. 

Both axes are expressed in minutes. The horizontal axis represents 
Mean values, while the vertical axis represents values of Xmax (the 90th 
percentile). Every pair of values that are plotted (shown by a little 
circle) was taken from a particular density curve in the Appendix and 
therefore represents a different density function.  (The data points are 
tabulated in Table 1.) We have taken the liberty of connecting those data 
points that have the same Median value by a continuous curve, and then 
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TABLE 1 

DATA POINTS FOR FIGURE 1 

Mediar i:    15 
Xmax Mean 

33 13 
47 22 
59 26 
63 29 
76 32 
82 35 
88 37 
94 

i 
40 

Median:    30 
Xmax 

67 36 
33 40 
97 a 

119 52 
129 55 
137 53 

Mean 
Median:    15 

Xmax Mean 

32 50 
100 54 
115 53 
130 62 
143 67 
155 70 
166 74 

Median:     60 
Xmax Mean 

96 64 
114 68 
132 72 
143 76 
162 30 
176 85 
186 89 

Kediar i:    90 Median :    120 
Xmax Mean Xmax Mean 

144 
162 
131 
198 
214 
229 

96 
100 
104 
108 
112 
116 

155 
173 
192 
211 
229 

122 
125 
123 
132 
136 

Median:    180 
Xmax Mean 

232 184 
250 186 
269 189 
288 192 
307 196 
326 199 
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making a partial extension at both ends of these "Median curves" 
(according to how we believe it would go if we had more data points). 
The reader should convince himself that this was justified due to the 
pattern indicated by the given data points. 

Furthermore, to give a more realistic picture, we have used a 
different unit on the vertical scale than we have on the horizontal scale. 
Our choice was dictated by the fact that a given change in the Mean value 
is more readily noticed than the same change in Xmax. The ratio we used 
was 1 to 2—although some might argue with this particular choice, we feel 
certain that all would agree that the unit on the horizontal axis should 
be larger than the unit on the vertical axis. 

Now let us see what these Median curves tell us. Let us first analyze 
what happens as the Xmax value changes with the Mean value held fixed. 
Since any vertical line represents a fixed mean, we see that moving upward 
on a vertical line corresponds to increasing the Xmax value for any given 
Mean. Figure 2, below, has enlarged two of these Median curves and such 
a vertical line has been superimposed. 

Xmax 
150 -- 

U0 -- 

130 - 

120 " 

110 -• 

100 L 

50 

Figure 2 
Extent of Degradation 
in Median Value as Xrr.ax 
Value Decreases for 
Fixed Mean Value 

-\ < 1- - +—• 
35  90 95  100 

Mean 
Obviously, most vertical lines would intersect two or more Median 

curves (in fact, all vertical lines would do so, if we had been able to 
show more Median curves). The important fact, however, is that we 
intersect a larger-valued Median curve first. We therefore conclude that 
as the Xmax value increases, an undesirable change, the Median value 
decreases, a desirable change! Moreover, as we make small decreases in 
the value of Xmax, we induce a relatively large increase in the Median 
value. 

We shall now paraphrase these results in Maintainability language. 
For the Lognormal class, the following property holds: 
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"For a fixed Mean, to slightly improve (lower) that value 
for which 90$ of all repairs will not exceed, we must 
tolerate a (relatively) large increase in the value for 
which 50$ of all repairs will not exceed. Thus, we 
cannot lower (improve) one of these without raising 
(adversely affecting) the other, unless we also lower 
the Mean value." 

Whether or not this is realistic is another matter—let us first discuss 
the consequences of this special property. 

A discerning reader should be saying to himself:  "Yes, I agree, but 
if only a slight reduction in the Mean value is required to leave the 
Median value virtually untouched, then this property would be of no 
practical importance." Also, those who are statistically oriented might 
be thinking: "This is a natural consequence of lowering (raising) the 
Standard Deviation which, in essence, is being done when we lower (raise) 
the Xmax value—and, surely, we can find ways to compensate for this 
property." 

Let us try to answer both propositions at once. We would like to give 
prospective contractors adequate guidance—by adequate we mean simply 
this: he should be able to take our quantitative requirements and imme- 
diately know what constitutes an improvement over these requirements. 
Obviously, if we specify the Mean and Xmax values, we are in effect telling 
him that he need not devote his efforts to making repair actions take as 
little time as possible. In fact, he would be hurting himself if he did, 
particularly if we used the "sample standard deviation''" to demonstrate 
compliance with the Mean value. More specifically, we would be telling 
him to effect changes to those repair actions which depart too much—in 
either direction—from the Mean value! /That is to say, raise those which 
are too short and lower those which are too long. Ridiculous ? Let us 
hasten to add that we think so too. 

The following example shall be used to indicate how large a change 
could take place in the vicinity of "short repair-times" in an effort to 
meet our requirements. Let us suppose that a Mean of 1 hour and Xmax of 
2^ hours were set forth. These requirements would be satisfied by either 
Curve A or Curve B below. These density functions have been taken from the 
Appendix. Both have the same Mean value (58 minutes) and both have lower 
Xmax values than the required 2^ hours. 

The "sample standard deviation" will be explained when we discuss 
demonstration methods. 
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Median'Median Mean 
Curve B Curve A Both Curves 
30 mins 45 mins 58 mins 

Xmax 
Curve A 
115 mins 

Xmax 
Curve B 
137 mins 

However, the contractor would stand a better chance of convincing 
us he has met requirements if he designed for Curve B instead of Curve A. 
The consequences of his doing so are illustrated below: 

We lose this. 

suffer this' 

in order to/gain this- 

and remove this. 

Mean 

It should be observed that, in this case, a small decrease (10%) in 
•the Xmax value has brought about a large increase (50%) in the Median 
value. Which of these curves indicates a better Maintainability design? 
We feel that most would agree that for certain applications Curve B would 
be needed, whereas for other applications Curve A would be more economical, 
depending on how seriously long repair times would affect mission 
achievement. 

It must be remembered that we are merely discussing mathematical 
properties of a given class of functions (in spite of the fact that they 
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have a severe impact on our specification and verification of numerical 
requirements). In a real situation, there may only be two or three repair 
actions which cause the achieved value of Xmax to be greater or lower than 
desired. These could be corrected during design reviews, thereby giving 
us a density curve that is similar to the left hand portion of Curve B 
and the right hand portion of Curve A.    That is, our achieved values would 
be: 

Xmax Mean Median 

115 58 15 

which represents an improvement over both curves. These values, of course, 
do not correspond to a lognormal density; however, we have been trying, in 
this report, to convince those responsible for developing Maintainability 
requirements that we must reject the lognormal function as a design 
criterion—its usefulness in this respect is extremely limited! 

We have still not answered the question: how much does the Mean value 
requirement (60 minutes) have to be lowered in order to leave the Median 
value (15 minutes) intact, as we lower the Xmax value from 137 minutes to 
115 minutes? The curves in Figure 1 provide the answer; namely, 10 minutes, 
that is, about 17$. In other words, a 17$ reduction in the Mean value is 
required (to leave the Median value unchanged) when making a 10$ reduction 
in the Xmax value. This, to us, represents a large reduction, relatively 
speaking, of course. 

Naturally, our guidance would be more effective if we gave all three; 
but realizing that people are "creatures of habit", we shall now show 
that if only two of these are specified that the Median and Xmax is a 
better choice. This can be seen quite readily by examining the slopes of 
the curves in Figure 1. Moving along any particular Median curve corresponds 
to holding the Median value fixed—apparently, "large" changes in the Xmax 
value are required to bring about "small" changes in the Mean value, when 
the Median is held fixed. Moreover, the Mean decreases as Xmax decreases 
(and vice versa) lust as we would like to happen. In other words. an 
improvement in one necessarily brings about an improvement in the other. 
In this case, there is no question as to how to improve upon the stated 
requirements—minimize both as much as possible! 

There is only one remaining argument (that we can foresee) against our 
recommendation of specifying (and subsequently demonstrating) the Median 
value and the Xmax value. It is this: Operational requirements are often 
stated in terms of Availability which is most often defined as 

 (Mean-time-between-failure)  
(Mean-time-between-failure) + (Mean-downtime) 
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that is, we often know the Mean value requirement, but not the Median 
value. Although this does not alter the previous considerations at all, 
we feel it might be helpful to tabulate various Median value possibilities 
when (typical) values of the Mean and Xmax are given. Table 2 (next page) 
does just that, and may be read the other way also; that is, having 
demonstrated particular Median and Xmax values, that are shown in the Table, 
one can derive a Mean value that corresponds to them. Evidently, Figure 
1 can be used for this same purpose. 
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TABLE 2 

MEDIAN VALUES CORRESPONDING TO MEAN AND Xmax VALUES 

^xMean 

Xmax ^\ 
30 45 60 90 120 180 

50 25 

60 20 

75 16 40 

90 33 55 

105 20 50 

120 47 

135 83 

150 75 

165 70 

180 64 110 

195 105 

210 100 

225 95 

240 155 

270 
• 

150 

300 140 

360 120 
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2.  Mathematical Considerations: 

This section gives specific mathematical details of the lognormal 
class - its derivation and special formulae relating certain parametric 
values.  It begins at a relatively low level, but rapidly rises to a 
high peak; if the reader finds that the slope is too steep, he should 
skip to Chapter TV, most of which does not depend on this section. 

We have tried to restrict the discussion to those aspects which 
directly relate to the decision problem, but occasionally a digression 
is necessary in order to obliterate certain false notions that seem to 
be held by too many people.  Before we begin, a few words must be said 
about our choice of functions and notation.  We use the natural logarithm 
function only, denoted by "in t", because of its simplicity.  However, 
since (in a) (loga t) = In t (i.e., the natural logarithm of t is a 
constant multiple of "the logarithm of t with respect to another base a"), 
everything we say in the sequel would basically be true for any other 
base - only the numerical examples (parameter values), used to illustrate 
the ideas, would change. 

a.  Definition.  Although the lognormal distribution has often been 
defined as "the distribution of a random variable whose logarithm obeys 
a normal law of probability," this definition is actually misleading. 
Since the expression 

g (x)  = c e" 2p2 
(x - co): 

where c = l/p /2TT, defines a normal density function, users of the theory 
might be led into the trap of assuming that the lognormal density function 
f(t) is defined simply by replacing x by In t in the right side of the 
above equation.  This is incorrect - instead, we must proceed by examining 
the cumulative distribution function.  In these terms, we are given that 

Gx (a)  =  /     g(x)  dx = P{x 5 a} 

(with g(x) defined as above) is the cumulative distribution function for 
a random variable (x) which is obtained from another random variable (t) 
by the transformation x = In t.  In order to determine the distribution 
of the "untransformed variable" we use the "change of variable" technique 
of elementary calculus, which then causes the limits of integration to 
change as follows: 
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a 
e 

Gx (a)  = Gln   (a) = /      g(ln t)  d(ln t) 

Letting t' = e , and since d(ln t)  = —r— dt, 

rv    i 
G (a)  = /     4- §(ln t)  dt x " o 

" = F (f) (Say) 

One easily verifies that F satisfies all the properties that a cumulative 
distribution function is expected to have (since G does); in fact, since 
the logarithm function is non-decreasing, we know 

p{t * t'} =   p{ln tsint'} 

=    p(x ^  In t'} 

= G (in t') 
x 

= F(t') (Since eln *'  = t') 

that is, F(t')  = P^t St'}.  Now, 

•(f)  . f     4 t'   , 1 (in t - CD) 
2 

C e  2p2 dt 

and since c =  ==—,  we have finally verified that the lognormal 

density function, f, must he defined by the rule: 

'<*> • ^hr *' -&-(ln *" ^ 
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b.  Relations Between g(x) and f(t).  It is important to note that 
the mean and the variance of the untransformed variable (t) is not <x> and 
p2; these are the mean and variance of the transformed variable (x). 

In other words, the location and shaping parameters of the untrans- 
formed variable have not yet been given.  They are found by manipulation 
in accordance with the definitions given in Chapter I, and appear below: 

The Mean: M'V       » + (P
2
/2) M<t'= n = e    v ' ' 

The Median:    M*-'t-= 6 =  e 

The Mode:      MoCtr= I  =  e 

03 

o> - p2 

The Variance:   V-ft^ a2 = (e    ^ + P )(e P _ i J 

A glance at these formulae reveals some important properties of the log- 
normal distribution.  First, since the median 9 =  e , taking logarithms 
of both sides gives us: 

M< x >  = a> = In 0 

In words, 

The logarithm of the median of the untransformed 
variable is equal to the mean of the transformed 
variable. 

Second, these formulae show that no other parameters, thus far stated, 
have this simple relationship.'  In particular, we wish to emphasize that 

The mean of the transformed variable is not a 
function of any single parameter of the un- 
transformed variable. 

We shall find that this knowledge is indispensable when we try to develop 
a decision rule for Maintainability demonstration. 

To keep things straight, with a minimum number of words, we shall always 
call the random variable described by f(t) the "untransformed variable," 
and that described by g(x) the "transformed variable." 
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The formulae for u and a2,   given above, may be solved simultaneously 
to derive formulae for CD and p2 in terms of u and o2, which we now state: 

M > x t = CD = - —— In ( 5- 
2    \  u 

and once CD is known we have 

V{x}= p2 =  (2 In n) - (2CD) 

We may verbalize these facts as follows 

a2 

The mean and variance of the transformed variable 
are functions of two variables; i.e., each is a 
function of the mean and variance of the untrans- 
formed variable. 

Chapter IV of this document explains the practical significance of these 
underlying relationships, which comes to the surface as we attempt to 
analyze repair-time data. 
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CHAPTER IV 

RECOMMENDED DEMONSTRATION METHODS 

1. The Meaning of Demonstration 

Repair-time data is analyzed for three different purposes. It is our 
belief that many people have not given careful thought to distinguishing 
between the three, which causes problems when they try to communicate with 
each other. Therefore, we hope to eliminate this confusion before attempting 
to give our demonstration methods. However, the reader should not thir.k of 
the following discussion as a digression; we have only one of these purposes 
in mind—if he has another, he may gain very little from learning our methods. 
Furthermore, we will introduce certain terminology that will be used in 
explaining our demonstration methods. 

The three purposes are: 

(i) Prediction 

(ii) Estimation 

(iii) Verification (Decision-Making) 

We shall learn that one reason for the confusion is that similar methods 
may sometimes be used to accomplish these three different objectives. For 
the most part, however, the methods are quite different. 

Prediction aims at finding the specific density function that fits the 
equipment or system in question.  (We leave to the reader to fill in why 
this knowledge is sought for prediction purposes—the "why" of it is not 
pertinent to the present aim of comparing "how" these objectives are 
accomplished.) To accomplish a prediction exercise, quite a bit of data 
must be collected, particularly if there is no "a priori" information 
concerning the sought-after function. There are no specific rules that 
dictate "how much" before the data collection begins. However, if the class 
of functions that governs the repair-time behavior is already known (for 
example, if it is known that the Lognormal class applies) then the goal of 
prediction is to get a "best estimate" (sometimes called "point estimates") 
of the parameters of that class of functions. Depending on the class 
involved, there may or may not be specific rules which dictate how much data 
to collect to obtain such estimates. Occasionally, certain "estimation" 
techniques are used to attain the desired goal, but this does not alter the 
fact that the main purpose is to find the specific density function. 

Estimation aims at gaining information about the parameters of a given 
(sometimes not given) class of functions.  It is usually not concerned with 
finding the density function itself—a point that cannot be emphasized too 
strongly. There are two general methods used for estimation purposes. 
When very little is known about the class involved (only that such functions 
are continuous, for example) the so-called "non-parametric" technique is 
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usually used. This technique (whose name may be misleading) tries to obtain 
estimates concerning certain parameters without directly depending on know- 
ledge of a particular class of functions which governs the basic random 
variable. The name "distribution-free" has been suggested as a substitute 
for "r.on-parametric," and this is a better choice for obvious reasons. 

Another method for estimation has been given the name "confidence interval 
estimation." This method rests quite heavily on knowledge of the particular 
class of functions involved, and uses this knowledge directly to obtain 
estimates of parameters. Quite often, "confidence interval" techniques are 
used to gain information concerning the "average value" since, as we have 
previously pointed out, this kind of knowledge is essential to give the 
concept of "average" precise meaning. Naturally, one would not use a certain 
class to give meaning to "average" and then use a non-parametric approach to 
get estimates of the average value which, in effect, says "I'm not quite 
sure what class of functions applies to this random variable." 

The output of the two types of estimation methods is pretty much the 
same—a probability statement (usually called a "confidence interval" state- 
ment) that the parameter in question falls within a certain "spread" of 
values. Depending on the amount of data collected this "spread of values" 
(called an "interval") may be relatively large; whence it may convey little 
useful information for making decisions. How large a sample must be collected 
to yield interval estimates of a certain restricted size, at a given level 
of probability, may sometimes be predetermined. In many cases, however, 
this is not possible; that is, the size of the interval can only be determined 
after the data has been collected. This situation usually occurs when the 
given class of function has two parameters both of which are unknown; for 
example, the Lognormal class. 

The above discussion of prediction and estimation, brief as it was, 
should have been sufficient to point out that neither is an appropriate tool 
for decision-making. The methods used are particularly inadequate for 
making decisions concerning compliance or non-compliance with contractual 
requirements—which is the type of decision-making (verification) that this 
report is mostly aimed at. Most decision-making requires that the amount 
of data that will be collected be stipulated in advance; that is, before 
data collection begins. Moreover, an unambiguous rule must be established 
which tells us which decision to make—accept or reject—on the basis of the 
collected data. Such decisions always involve a certain degree of "risk" 
to both parties (Air Force and Contractor); that is to say, these evalua- 
tions cannot be made with certainty. Therefore, it is important tc realize 
that the "risks" must be quantified in order that they may be controlled. 
This quantification of risks is easily accomplished when the class of 
functions that pertains to the random variable under consideration is known. 

It is not our intent to present decision theory for its own sake—only 
to show how we apply certain techniques to solve the Maintainability 
demonstration problem. We shall give further elaboration of the decision- 
making approach as we give the details of our demonstration method. 
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2. Practical Application of Prediction. Estimation, and Demonstration 
Methods1 

We hope that these introductory remarks have caused the reader to see 
the basic differences between prediction, estimation, and decision-making— 
the latter, of course, being equivalent to "demonstration." Let us give 
one practical example, however, to illustrate these differences. 

Suppose we require a vehicle-mounted communications system composed 
primarily of UHF, VHF, and HF radio sets. Suppose mission requirements 
call for an Availability figure of 90£, and that a "point estimate" MTBF 
figure of 180 hours has already been obtained. Examining the ratio 

MTBF   =   130   _ oo6 
MTBF + MDT  180 + MDT 

tells us that our mean-down-time (MDT) figure must be 44 minutes or less. 
A prediction exercise would now be conducted by the Air Force to establish 
quantitative requirements (and subsequently by prospective contractors to 
determine whether they can meet the requirements). For example, using 
empirical data, the Air Force may decide that, in the past, the Lognormal 
has applied to this type of gear, in which case they would see (from the 
curves contained in the Appendix, or the Median curves in Figure 1) that a 
Median value of 30 minutes and an Xmax value of 97 minutes corresponds to 
a Mean value of 44 minutes. Estimation techniques (using field data) may 
be used, as well, to determine the reasonableness of these quantitative 
requirements. For example, if one has (say) one hundred samples of repair 
times, labeled 

*1» t2» t3,  , tioo 

and if one takes (natural) logarithms of these values and labels them 

x1 > x2» x3>  > X100     (xi = ^n *!' 

then the computation of 

- _ x-| + x
2 +  + X1QQ 

100 

gives a (best) estimate of the Mean of the transformed variable (x). 
Knowing that the transformed variable obeys a Normal distribution with 
Mean value to (say), one may use students-t distribution to get a confidence 
interval estimate of o>. Now since 

e 
<D = e 

iThis section rests quite heavily on terminology and results developed in 
Section 2 of Chapter III. Those who have not mastered that section should 
skip over to Section 3. 
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is monotonic increasing, where 9 is the Median value of the untransformed 
variable, the confidence interval estimate of CD may be translated (in 
one-to-one fashion) to a confidence interval statement about the Median 
value 0. The following examples show this quite clearly: 

Example 1 

Corresponding 
confidence 
interval 
statement 
about 6 ^* 

CD 

Confidence interval 
statement about CD 

Example 2 

Corresponding 
conf idejice 
interval 
for 0,  

CD 
, 1 e 

Confidence interval for CD 

We note, in passing, that methods for finding"exact*confidence intervals 
for the Mean value (of the basic random variable) are yet to be developed, 
For those who are interested in gaining further insight into estimation 
techniques we urge them to consult "The Logr.ormal Distribution" by 
Aitchison and Brown published by The Sydics of the Cambridge University 
Press (1957). 

i 
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Hence, it is rather easy for both parties (Air Force and Contractor) 
to obtain confidence interval estimates of the Median value (or the Mean 
value of the transformed variable), thereby providing further justification 
for giving the Median value explicit mention. 

It should be added that if abundant repair-time data is available 
(a rare occurrence) one could treat the "sample Mean" or the "sample 
Standard Deviation", defined by: 

t =  (l/n)X    t. (sample mean) 

(l/n) Z  (t. - t ) (sample standard deviation) s 
' i=l 

as obeying a normal distribution. Besides the fact that there are no 
rules for determining how large n must be for this technique to be 
appropriate, one must be rather careful when analyzing s; that is, as 
previously mentioned, higher values of s give rise to "better" Median 
values (more generally, the left hand portion of the density curve is 
improved). but they also produce "worse" Xmax values (more generally, 
the right hand portion of the density curve is degraded). Thus, one 
must be on guard not to become so enamored with his "objective" stati- 
stical approach that he loses sight of how to interpret his results. 
This lack of "order" concerning the "sample Standard Deviation" makes 
it a poor measure to use for the demonstration of "percentile require- 
ments." It is only useful when coupled with investigations of the 
Mean value; for example, if one seeks "pdint estimates" of the parameters 
of the density function for prediction purposes. In this regard, another 
theorem that might be useful for gaining point estimates is:  (see 
Section 2 of Chapter III for definitions of symbols) 

P {z S p/2} = J        f (t) dt 2      1       2 
/TTT 

ci.x 

In words, the area to the left of the Mean of the untransformed variable 
is a function of the standard deviation (alone) of the transformed 
variable. Rephrased in Maintainability language, this theorem tells us 
that the probability of completing a repair in less time than the Mean 
value is equal to the area to the left of the point p/2 in a standard 
normal distribution (Mean zero, and Standard Deviation 1), where p is 
the standard deviation of the transformed variable. Thus, one could set 
Hhe percentage or sample repair-times that take less than the sample Mean 
t" equal to the last integral on the right, above, and use normal tables to 
solve for p .  If one combines an interval or point estimate of oi with 
this point estimate of P  , one then has a rough idea of the density 
function (assuming lognormality, of course). 
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Now that we have seen how "estimation" techniques are used, we would 
like to emphasize that it would be a serious mistake to use such techniques 
for decision-making purposes. To see why this is so, let us suppose that 
a 90% confidence level is chosen, and the demonstration (data) tells us 
that our interval is fifteen minutes to one hour; that is, we have 90% 
confidence that the Median-time-to-repair lies somewhere between those two 
limits. (Recall that our requirement was for one-half hour.) How do we 
make a decision? Do we use the lower limit, fifteen minutes, or the upper 
limit, one hour, to make a decision? Evidently, if we required the upper 
limit to fall below one-half hour (before we would accept), this would be 
too strict, but if we required the lower limit to fall above one-half hour 
(before rejection), this would be too lenient. Anyway, either stipulation 
leads to no decision in most cases. This example should make it apparent 
that estimation techniques are not designed to make decisions. Another 
approach is needed. 

Having shown how prediction and estimation techniques are applied to 
this practical example, it remains to discuss demonstration methods. This 
shall be covered in detail in subsequent sections. Here, we simply state 
that our decision-making approach will be "distribution-free" in nature, 
which simply means that we will try to develop a decision rule that does 
not depend upon the Lognormal class. The reasons for this have already 
been covered in detail and will not be repeated. 

3. Rationale for the Demonstration Method 

We recommend that Wald's Sequential Analysis technique be used to 
develop what we shall call a "Sequential Test of Percentiles." The specific 
test procedure shall be given in the next section. In this section we 
shall simply record our reasons for choosing Sequential Analysis techniques, 
without giving further elaboration of these ideas. In stating these 
reasons we may have used certain statistical and/or Systems Command 
"jargon" which are not defined elsewhere in this report. We ask the 
reader to excuse us on the grounds that this report may already be "too 
long" for its content. 

Our reasons are: 

a. Fewer observations (maintenance actions) are permitted, for 
a given level of confidence, than the "fixed" sample size approach. This 
results in considerable savings in "test dollars" without affecting our 
assurance that requirements have been met. 

b. Air Force and Contractor risks may be explicitly quantified and 
evaluated. Thus, "the probability of accepting unsatisfactory equipment" 
(usually called consumer risk) and "the probability of rejecting satisfactory 
equipment" (usually called producer risk) are carefully controlled. 

1See Wald's "Sequential Analysis," John Wiley & Sons (1947). 
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c. Methods of sequential analysis are better suited to tests 
conducted under operational conditions (e.g., Category II testing) where 
failures are not simulated. In such cases, the number of expected maintenance 
actions is unknown and dependent upon the failure-rate of the system/ 
equipment. 

d. When all (or most) testing must be conducted in an operational 
environment, R&M testing and evaluation may be conducted simultaneously, 
using a similar criterion for decision-making, thereby reducing the total 
cost of testing and encouraging trade-off analyses or, at least, providing 
an awareness of the effect that one of these system parameters has upon the 
other. 

4. Sequential Test of Percentiles 

We assume now that our quantitative requirements shall chiefly be stated 
as 

a. The Median-time-to-repair (MTTR), i.e., the fOth Percentile. 

b. Xmax, i.e., the 90th Percentile. 

Thus, we require a technique that tests these particular percentiles of the 
distribution. We shall see that this is quite easy due to the direct 
connection between "percentiles" and "probability" (the cumulative distri- 
bution function). 

By now, it should be clear that if the true value of the Median is 
equal to the specified value, then the probability that a repair action will 
take less time than the specified value is 50%. Consequently, having 
observed say 50 repair actions, if only 10 of these take less time than 
the specified value and the remaining 4.0 take more time, we would seriously 
question whether the true Median is within reasonable limits of the 
specified value. On the other hand, if 40 fall below and only 10 fall 
above, we would be conducive to the belief that the true Median is at 
least as good as the specified value. 

It should also be clear that our problem reduces to how many must fall 
below the specified value to cause immediate acceptance, and how many must 
fall above the specified value to cause immediate rejection. For example, 
if 25 fall above and 25 fall below, we may still entertain doubts as to 
what would happen if we took 50 more samples of repair-times. Similar 
remarks apply to the Xmax value; that is, we would have difficulty making 
a decision if 45 fell below Xmax and 5 fell above, since this is exactly 
90%. 

Fortunately, mathematicians have been thinking about this type of 
problem for some time, and have derived for us what is called the binomial 
frequency function which applies to experiments which are only interested 
in the occurrence or non-occurrence of an event.  If we know the probability 
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p of the event occurring in any one trial of the experiment, so that the 
probability of the event not occurring is (1-p), then the probability of 
obtaining exactly X occurrences of the event in n trials defines what is 
known as the binomial frequency function. This function is denoted by 
b(n;x;p) because it depends on n, x, and p, where: 

n = the number of trials to be made 

x = the total number of occurrences of the event in question 

p = the probability of the event occurring in any one trial. 

It is fairly easy to prove that this frequency function takes the form 

b(n;x;p) * , "'  >, • P* • 0-?)n'X 

x! (n-x)! 

(The probability of obtaining X occurrences of ^ 
= Yan event in n trials if the probability of theV 

(.event occurring in one trial is p.        J 

so that it will not be proven here''. This function will be quite useful 
in setting up a decision rule to test our percentile requirements. 
Specifically, it represents a mathematical model, not of the "time-to- 
repair" statistic, but of "the number of repairs that take less (or more) 
time than any given percentile." Accordingly, it may be used to quantify 
and therefore control the risks involved in making accept-reject decisions. 

A nice feature of the binomial frequency function is that it does not 
depend upon the Lognormal class at all. In fact, the binomial applies to 
percentiles no matter what class of functions governs the "time-to-repair" 
statistic. 

In order to keep this report within reasonable proportions, we cannot 
go into detail concerning sequential analysis techniques. This is done 
in Section V of ESD TDR-64-616, "Handbook for Reliability and Maintaina- 
bility Monitors." Although that section concerns itself mostly with 
Reliability decision-making, Chapter 3 of that report deals with the 
decision problem in general. For this report we shall be satisfied to 
give an accept-re.ject criieria, accompanied with a brief explanation, that 
would be useful for making decisions concerning the specified Median and 
Xmax values. Appendix B gives the mathematical equations used to develop 
Table 3. 

1 
The proof may be found in any standard text on probability theory. 
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ACCEP1-REJECT CRITERIA 
SEQUENTIAL TEST OF PERCENTIIES 

TABLE 3 

Total 
Number 
of Tasks 

9 = 50th Percentile"] Xmax = 90th Percentile 

N 

c0 

51 
52 
53 
c4 
c5 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
BO 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
°2 
93 
°4 
95 
96 
97 
98 
99 
100 

r. ,Number of tasks >     g 
ithat take less time than Or     n 

* _      Number of tasks that take I 
less  time than Xmax J 

ACCEPT      REJECT      CONTINUE 

31 19 
31 20 
32 20 
32 21 
33 21 
33 22 
34 22 
34 23 
35 23 
35 24 
36 24 
36 25 
37 25 
37 26 
38 26 
38 27 
39 27 
39 23 
40 23 
40 29 
41 29 
41 30 
42 30 
42 31 
43 31 
43 32 
44 32 
44 33 
45 33 
45 34 
46 34 
46 35 
47 35 
47 36 
48 36 
48 37 
49 37 
49 38 
50 38 
50 39 
51 39 
51 40 
52 40 
52 41 
53 41 
53 42 
54 42 
54 43 
55 43 
55 44 
56 44 

20-30 
21-30 
21-31 
22-31 
22-32 
23-32 
23-33 
24-33 
24-34 
25-34 
25-35 
26-35 
26-36 
27-36 
27-37 
28-37 
28-38 
29-38 
29-39 
30-39 
30-40 
31-40 
31-41 
32-41 
32-42 
33-42 
33-43 
34-43 
34-44 
35-44 
35-45 
36-45 
36-46 
37-46 
37-47 
38-47 
38-48 
39-48 
39-49 
40-49 
40-50 
41-50 
41-51 
42-51 
42-52 
43-52 
43-53 
44-53 
44-54 
45-54 
45-55 

ACCEPT REJECT CONTINUE 

c r 

56 
57 
58 
59 
to 
61 
62 
63 
U 
b5 
65 
66 
07 
68 
69 
70 
71 
72 
73 
74 
7C 

75 
76 
77 
78 
79 

• 80 
81 
82 
83 
84 
85 
85 
8b 
37 
88 
89 
90 
91 
92 
93 
94 
95 
95 
06 

40 
41 
42 
43 
44 
4: 
46 
40 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
56 
57 
58 
59 
60 
61 
c2 
63 
64 
65 
66 
67 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
77 
78 
79 
80 
81 
32 
83 
84 
85 

40 
41 
42 
43 
44 

46-54 
47-55 
47-56 
43-57 
49-53 
50-59 
51-60 
52-61 
53-62 
54-63 
55-64 
56-64 
57-65 
57-66 
53-67 
59-68 
60-69 
61-70 
62-71 
63-72 
64-73 
65-74 
66-74 
67-75 
63-76 
68-77 
69-78 
70-79 
71-80 
72-81 
73-82 
74-83 
75-84 
76-84 
77-85 
78-86 
78-87 
79-88 
80-89 
81-90 
82-91 
83-92 
84-93 
85-94 
86-94 
ft7_Q5 
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A graphic representation of the 50th Percentile decision rule is given 
in Figure 3. 

SEQUENTIAL TEST OF 50TH PERCENTILE 

FIGURE 3 

A similar praph can be plotted for the 90th Percentile test by consulting 
the equations given in Appendix B. 
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Let us briefly explain the use of Table 3. No decision is made until 50 
repair actions have been completed. At the completion of $0 tasks we begin 
by computing 

Sn = Total number of tasks that take less time than the 
contractual Median-time-to-repair (MTTR), 0, in n trials. 

S*n = Total number of tasks that take less time than the 
contractual Xmax, in n trials. 

For example, if SCQ = 31, we accept. However, if S^Q ~ 19 or if S*rQ = 40, 
we would reject. As soon as one of Sn or S*n causes an accept decision, we 
stop computing that statistic and continue computing the other until 
reaching an accept decision for that one also.  If either of these statistics 
causes a reject decision, our decision is to reject. If both statistics 
remain in the continue test region throughout the test (through 100 tasks) 
we would then make an accept decision. 

This accept-reject criteria makes decisions wi.th a maximum of 10% risks 
for both parties by making the assumptions given :Ln Appendix B. There,it 
is indicated that both parties are required to depart a small (equal) amount 
from the specified values in order to compute their (maximum) risks. 
Furthermore, such departures are necessary to give relatively low and equal 
risks to both parties throughout the test. 

It may appear that the Air Force incurs a higher degree of risk if we 
remain in the "continue test region" throughout the test, since we have 
stated that an accept decision is made when this occurs. Actually, this is 
not so for the following reason: The longer we stay in the "continue test 
region," the more assurance is gained that the specified MTTR value, Q,  is 
between the 45th and 55th Percentile, and the specified Xmax value is 
between the 88th and 92nd Percentile. Although, no-one has taken the 
trouble to quantify this added assurance, it is nonetheless intuitively 
clear that this is so. Section V of ESD-TDR-64.-616 gives a suggestion for 
how such a quantification could be carried out, if such was needed. For 
our purposes, it does not appear to be necessary. 

5. Selection of Maintenance Tasks 

This study did not investigate methods for selecting maintenance tasks 
to be simulated (in-plant or elsewhere), although thoughts about this 
aspect nagged us often, and some might hold to the belief that this is a 
more severe problem than the one we tackled. This does not mean that we 
draw a blank in this area; we do have some thoughts which we shall now 
state. 

First and foremost, we do not believe that this problem can be 
completely solved by stating a given generalized procedure for the 
selection of maintenance tasks (at least not for electronic equipment 
which are composed of thousands of parts). Ideally, any procedure should 
take into account: 

U3 



a. Failure rates, so that units which fail most often are given 
a large share of the total number of tasks to be simulated. 

b. Repair rates, so that units which are responsible for the major 
portion of the total down-time (for any piven period) are given an appropriate 
share of the number of tasks to be simulated. 

But in a practical case, it may not be feasible to use b, above, as 
part of the procedure. The reason for this is clear:  if we allow (gross) 
estimates of repair rates to influence the task selection, and if such 
estimates are wrong, we run the risk of biasing our results. If we could 
assume that the contractor could provide good estimates in this area, or that 
we could evaluate such estimates, there would be no need to demonstrate in 
the first place. 

One could say that these same comments apply as well to estimates of 
failure rates; but there is a significant difference. Failure rates are 
analyzed (and demonstrated) separately—often by different people. Also, 
it is easier to detect (gross) errors in failure rate estimates (which are 
bad enough to create bias) due to what we call the "experience factor." 

In any case, the contractor should be given a definite procedure for 
the selection of maintenance tasks from which he may depart only if 
approval is obtained from the procuring activity. Needless to say, close 
scrutiny by the procuring activity is required. For the reasons mentioned 
above, the following procedure is the best that we have seen to date; 
however, it is not appropriate for verbatim-application to contractual 
documents. It merely represents a bare framework which must be given 
further elaboration in any individual procurement situation (in light of 
the design characteristics of the equipment involved). Such words as 
"unit", "proup", etc., must be defined in order that the number of tasks 
to be demonstrated are not spread "too thinly" over the myriad collection 
of parts-, thereby giving an unrealistic demonstration effort. 

The procedure is as follows: 

a. Obtain the failure rate of each unit (the sources used must 
be approved by the procuring activity). 

b. Group together similar units or homogeneous classifications 
into r groups, and for each group i (i = 1, 2, ..., r) determine g^, the 
average group failure rate. 

c. For each group i, determine h., the number of items in the 
group. 
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d. Apportion a minimum of n maintenance tasks to the r rroups in 
proportion to their respective failure rate averages and the number of 
items in each group in accordance with the following formula: 

(pi)(h1)n 
xi 

i=i 

where x^ = the number of tasks to be simulated in a 
particular group i. NOTE: If x. is not an 
integer, the least positive integer greater 
than Xi will be used. 

e. The x^ tasks shall be apportioned to the particular group items 
by the use of a random number table. 
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APPENDIX A 

LOGNORMAL DENSITY AND CUMULATIVE DISTRIBUTION CURVES 

FOR CONSTANT MEDIANS 

The following curves were developed by the Analog Computer Lab- 
oratory of MITRE Corporation using the mathematical definitions and 
equations of Chapter III (Section 2). 

Those values which were derived by hand computations (using 
table look-ups) are given in the table titled "Preliminary Computa- 
tions for Analog Computer", which is also included in this appendix. 

The reader is cautioned to consult the horizontal and vertical 
scaling values whenever he enters a curve for the first time, as 
they usually change. 
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MEM VALUE COMPUTATIONS 

e = .25 s P2 
P2 

CD 
P2 

00   + 

Mean 

2 

.05 •03779 .0189 -I.3863 -1.367!+ .25^8 

.1 .1313 .0657 -1.3206 .2670 

.2 .3670 .1835 -1.2028 .3001+ 

.h .7776 .3888 - .9975 .3688 

.6 1.0826 •5^13 -   .8U50 .1+296 

.8 1.3188 .65yi+ -   .7269 .I+83I+ 

1.0 I.50I48 • 752U -   -6339 .5305 

1.2 1.6726 • 8463 -  .5I+OO .5827 

l.k 1.8120 .9060 -   .1+803 .6186 

1.6 1.93^3 .9672 -  .1+191 .6576 

e = .5 

.05 .0099 .00U95 -     .6931 -   .6882 .5025 

.1 .03779 .0189 -   .67I+2 .5096 

.2 .1313 .0657 -  .627I+ • 5339 

.1+ .3670 .1835 -   .5096 .6007 

.6 .5878 • 2939 -  -3992 .6709 

.8 • 7776 .3888 -  .301+3 • 7376 

1.0 .9U07 .I+70U -   .2227 .8001+ 

1.2 1.0822 .5I+II -   .1520 .8590 

1.1+ I.207I+ .6037 -   .0891+ .91I+5 

1.6 1.3188 .659I+ -   .03T7 . 9669 
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MEAN VALUE  COMPUTATIONS 

0 =   .75 S p2 
P2 

CD 
P2 

Mean 

ea>+     2 2 CD   +       2 

.05 .00^ .0022 -.2877 -.2855 .7516 

.1 .0174 .0087 -.2790 .7565 

.2 .06462 .03231 -.2554 .7746 

• 4 .2078 .1039 -.1338 .8321 

.6 .3669 .1835 -.1042 .9010 

.8 .5175 .2588 -.0289 .9715 

1.0 .6543 .3272 +.0395 1.0403 

1.2 .7776 .3888 + .1011 1.1064 

1.4 .8889 .4444 + .1567 1.1696 

1.6 .9900 .4950 +.2073 1.2304 

9 = 1 

.05 .0055 .00275 0 +.00275 1.0028 

.1 . 0099 .00495 +.00495 1.0050 

.2 .03779 .0189 +. 0189 1.0191 

• 4 .1313 .Ob 57 +.0657 1.0L79 

.b .2477 .1239 +.1239 1.1319 

.8 .3b69 .1335 + .1335 1.2014 

1.0 .4812 .2406 +.240o 1.2720 

1.2 .5878 .2939 +.2939 1 .3416 

1.Z . b8b4 .3432 +.3432 1.4095 

1.6 .7776 .3383 +.3388 1.4752 

AFSC  j"•,    185 A GENERAL PURPOSE WORKSHEET PREVIOUS   EDITIONS   OF   THIS 
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MEAN VALUE COMPUTATIONS 

e = 1.5 S P2 
P2 

2 CD 
P2 

CD   + 

Mean 

.05 .0011 .00055 .4054 +.4060 1.5008 

.1 .0043 .00215 +.407b 1.5032 

.2 .017-4 .0087 + .4U1 1.5130 

.A .0645 .0323 +.4377 1.5491 

.6 .1312 .0656 + .4710 1.6016 

.8 .2078 .1039 +.5093 L664I 

1.0 .2875 .U38 +.5492 1.7319 

1.2 .3668 .1834 +.5888 1.8018 

1.4 • 4437 .2219 +.6273 1.8725 

1.6 .5175 .2588 +.6642 1.9429 

9 = 2 

.05 .0006 .0003 .6932 +.6935 2.0010 

.1 .0025 .00125 +.6945 2.0027 

.2 .0099 .00^95 +.6982 2.0101 

.4 .03779 .0189 + .7121 2.0383 

.6 .07981 .03991 +.7331 2.0815 

.8 .1313 .06565 +.7589 2.1359 

1.0 .1882 .0941 +.7873 2.1975 

1.2 .2476 .1238 +.8170 2.2637 

1.A .3076 .1538 +.8470 2.3326 

1.6 .3670 .1835 +.8767 2.4030 

66 AFSC /u°L
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MEM VALUE COMPUTATIONS 

e = 3 s P
2 

P2 

2 CD 

P2 

co +       2 

Mean 
p2 

eCU+ 2 

.05 .00030 .00015 1.0986 +1.0988 3.0C06 

.1 .0011 .00055 +1.0091 3.0015 

.2 .0044 .0022 +1.1008 3.0066 

• 4 .01729 .008645 +1.1067 3.0244 

.6 .03779 .01890 +1.1175 3.0572 

.8 .06462 .03231 +1.1309 3.0984 

1.0 .09622 .O48H +1.1467 3.1478 

1.2 .1313 .06565 +1.1643 3.2037 

1.-4 .1689 .08445 +1.1831 3.2645 

1.6 .2078 .1039 +1.2025 3.3284 

AFSC  /JL•,    185 A GENERAL PURPOSE WORKSHEET PREVIOUS   EDITIONS  OF   THI 
FORM   ARE   OBSOLETE. %1 





APPENDIX B 

DERIVATION OF SEQUENTIAL TEST OF PERCENTILES 

The mathematical details for these tests are given excellent cov- 
erage in the following texts: 

1. "Sequential Analysis" by A. Wald, John Wiley & Sons, 
19U7, pages 88-9U. 

2. "Introduction to Mathematical Statistics" by P. Hoel, 
John Wiley & Sons, Second Edition, pages 275-277- 

Presented here are the special aspects of these tests as they apply 
to us, as well as formulae and computations used to develop the tests 
given in Chapter IV. 

The general procedure is as follows: 

a. Denote by p, the (unknown) percentile of any con- 
tractually specified repair-time value (such as 
Median-time-to-repair or Xmax) for which the de- 
sired percentile value, v, is known (v = 50$> for 
the Median test and v = 90$ for the Xmax test). 

b. Choose producer's risk, a, consumer's risk, (3, 
and two numbers p and px such that 0 < px < p < 1 
and v is not smaller than px nor larger than p .  We 
wish to decide which of the following hypotheses is 
correct: 

H :  p = p 
00 

Hi: P = Px 

Wald advises us as follows:  "Thus, the tolerated 
risks are characterized by the four numbers, p , 
p , a, and p.  The choice of these four quantities 
is not a statistical problem.  They will be selected 
on the basis of practical considerations in each 
particular case." 

c. Once (a) and (b) are accomplished, the following 
formulae provide the required decision rule: 
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Accept if: 

P   \ 
« ->  In . - cu J + n In c 
u   = n in -B 

Reject if: 

/ 1 - P \ 
B    s ^  InV  a  > + n In c 

n In 
/ c \ 

where "In" denotes the natural logarithm function, and: 

(total number of repair-time observations 
that are made. 

[the number of observations that take less \ 
S =/time than the specified repair-time value V 

|(corresponding to v). J 

1 - Pl 

d =    (may be called the discrimination ratio). 

Pi 

If neither (A) nor (B), above, hold, continue testing (take another 
observation) until a decision is reached. 

We now apply this general procedure to derive the plan presented in 
Chapter IV.  The following selections were made: 

Xmax TEST 
v = 90th Percentile 

MEDIAN TEST 
V = 30th Percentile 

po 
= •55 

Pl = .45 

a = 10$ 

P = 10$ 

Po 
= .92 

Pi 
= .88 

a = 10$ 

P = 10$ 
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Thus, the following computations were needed: 

MEDIAN TEST 
COMPUTATIONS 

Xmax TEST 
COMPUTATIONS 

1  "  P. 

1  "  Pl 

1.1 
ilia. 
i - PI 

_2_ 
5 

c 
d 

81 

VP! 
121 d Po/Pi 

kk 

In c  =     In 
11 

-   .2 In c  =  In I ,Ul 

H-i-y i°yf> - •» In m In 
kh 
T9~) M 

-(T^> -^ 2.2 In P     ' 
l - a ^Hr)=   - 2.2 r ini—^ 

In (H^ In 9      =    2.2 In 1  -  P 
a ) =    In 9 2.2 

Using these values, the following formulae were derived: 

MEDIAN TEST 
DECISION EQUATIONS 

Xmax TEST 
DECISION EQUATIONS 

Accept if: Accept if: 

S i? .5n + 5-5 

Reject if: 

S 5 .9in + U. 
n 

Reject if: 

S^ <   .5n - 5-5 n 

Continue testing otherwise 

Sn § .9ln - U.89 

Continue testing otherwise 
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NOTE:  Normally, sequential tests are truncated by using a new 
decision rule which brings the decisions lines together. 
We did not use this technique (in Chapter TV) for the 
following reason:  As the test continues without a de- 
cision being reached, we gain added assurance that the 
specified Median and Xmax values have percentile values 
between the selected values p and p .  Although this 
added assurance is difficult to quantify, we feel it 
justifies a truncation procedure that extends the Accept 
region to include the Continue Test region at the end 
of the allotted test period.  Also, we have arbitrarily 
decided, in Chapter IV, that decisions should not be 
attempted until 50 tasks have been completed. 

The decision equations will actually make decisions 
earlier than this, if such is desired. Finally, we 
arbitrarily elected to end the test at n = 100. 

There are no hard and fast rules that tell us how to make 
such choices.  Such factors as equipment complexity, 
and criticality of the equipment for mission achievement 
must be considered, among others.  We have included the 
decision equations so that procuring activities could 
design tests that suit their needs. 

72 



Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security claeeitication oi title,  body of abstract and indexing annotation must be entered when the overall report ie classttied) 

1    ORIGINATIN G ACT|VITY (Corporate author) 

Technical Requirements & Standards Office, 
Electronic Systems Division, L.G. Hanscom Field, 
Bedford, Mass. 

2a    REPORT SECURITY   CLASSIFICATION 

UNCLASSIFIED 
2b    GROUP 

N/A 
3    REPORT  TITLE 

VERIFICATION OF QUANTITATIVE MAINTAINABILITY REQUIREMENTS 

4    DESCRIPTIVE NOTES (Type ol report and Inclusive datee) 

N/A 
5   AUTHORfS; (Lett name, lint name, initial) 

Grippo, Giacomo, Capt, USAF 
DeMilia, Richard M. 

6   REPORT OATC 

May 1965 
7«<   TOTAL NO.  OF   PACES 

72 
7*    NO. Of REFf 

1 
8«    CONTRACT  OR  GRANT  NO. 

IN-HOUSE 
b.   PROJECT  NO. 

fa.   ORIGINATOR'S  REPORT  NUMRERfSJ 

ESD-TR-65-220 

tb.  OTHER REPORT  NOfSj  (A ny other number* that may be aeeltned 
thlm  report) 

NONE 

10. AVAILABILITY/LIMITATION NOTICES 

Qualified requesters may obtain from DDC 
(Not of public interest for OTS release) 

11. SUPPLEMENTARY NOTES 

NONE 

1J. SPONSORING MILITARY ACTIVITY 

Electronic Systems Division, Air Force 
Systems Command, L.G. Hanscom Field, 
Bedford. Mass.. 017^1  

13 ABSTRACT 

This document develops basic concepts for treating Maintainability 
quantitatively, with particular attention devoted to probabilistic aspects. 
It focuses on the special characteristics of the Lognormal Distribution 
as they relate to specifying and demonstrating numerical requirements.  A 
catalog of Lognormal curves (both density and cumulative distribution 
functions) are included as well as recommended accept-reject criteria for 
Maintainability demonstration. 

DD .H&1473 UNCLASSIFIED 
Security Classification 



UNCLASSIFIED 
Security Classification 

14 
KEY WORDS 

LINK  A LINK   B 

. nOLf 

Command and Control Systems 
Maintainability (M) 
Maintainability Demonstration 
Maintainability Proposals 
Maintainability Decision-Making 
Quantitative Requirements (M) 

INSTRUCTIONS 

1.   ORIGINATING ACTIVITY:   Enter the name and address 
of the contractor, subcontractor, grantee. Department of De- 
fense activity or other organization (corporate author) issuing 
the report. 

2a.   REPORT SECURITY CLASSIFICATION:   Enter the over- 
all security classification of the report.   Indicate whether 
"Restricted Data" is included.   Marking is to be in accord- 
ance with appropriate security regulations. 

26.   GROUP:   Automatic downgrading is specified in DoD Di- 
rective S200.10 and Armed Forces Industrial Manual.   Enter 
the group number.    Also, when applicable, show that optional 
markings have been used for Group 3 and Group 4 as author- 
ized. 

3. REPORT TITLE:    Enter the complete report title in all 
capital letters.   Titles in all cases should be unclassified. 
If a meaningful title cannot be selected without classifica- 
tion, show title classification in all capitals in parenthesis 
immediately following the title. 

4. DESCRIPTIVE NOTES:   If appropriate, enter the type of 
report, e.g., interim, progress, summary, annual, or final. 
Give the inclusive dates when a specific reporting period is 
covered. 

5. AUTHOR(S):    Enter the name(s) of authors) as shown on 
or in the report.   Entei last name, first name, middle initial. 
If military,  show rank end branch of service.    The name of 
the principal author is an absolute minimum requirement 

6. REPORT DATE:    Enter the date of the report as day, 
month, year; or month, year.    If more than one date appears 
on the report, use date of publication. 

7a.    TOTAL NUMBER OF PAGES:    The total page count 
should follow normal pagination procedures, i.e., enter the 
number of pages containing information. 

7b.    NUMBER OF REFERENCES:    Enter the total number of 
references cited in the report. 

8a.   CONTRACT OR GRANT NUMBER:    If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written. 

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate 
military department identification, such as project number, 
subproject number, system numbers, task number, etc. 
9a.   ORIGINATOR'S REPORT NUMBER(S):    Enter the offi- 
cial report number by which the document will be identified 
and controlled by the originating activity.   This number must 
be unique to this report. 
9b. OTHER REPORT NUMBER(S): If the report has been 
assigned any other report numbers (either by the originator 
or by the sponsor), also enter this number(s). 

10.   AVAILABILITY/LIMITATION NOTICES:    Enter any lim- 
itations on further dissemination of the report, other than those 

imposed by security classification, using standard statements 
such as: 

(1) "Qualified requesters may obtain copies of this 
report from DDC " 

(2) "Foreign announcement and dissemination of this 
report by DDC is not authorized." 

(3) "U. S. Government agencies may obtain copies of 
this report directly from DDC.   Other qualified DDC 
users shall request through 

(4)     "U. S. military agencies may obtain copies of this 
report directly from DDC   Other qualified users 
shall request through 

(5)     "All distribution of this report is controlled.   Qual- 
ified DDC users shall request through 

If the report has been furnished tc the Office of Technical 
Services, Department of Commerce, for sale to the public, indi- 
cate this fact and enter the price, if known. 

1L SUPPLEMENTARY NOTES: Use for additional explana- 
tory notes. 

12. SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring (pay- 
ing lor) the research and development.    Include address. 

13. ABSTRACT:   Enter an abstract giving a brief and factual 
summary of the document indicative of the report, even though 
it may also appear elsewhere in the body of the technical re- 
port.    If additional space is required, a continuation sheet shall 
be attached. 

It is highly desirable that the abstract of classified reports 
be unclassified.    Each paragraph of the abstract shall end with 
an indication of the military security classification of the in- 
formation in the paragraph, represented as (TS), (S), (C), or (U) 

There is no limitation en the length of the abstract.    How- 
ever, the suggested length is from 150 to 225 words. 

14. KEY WORDS:    Key words are technically meaningful terms 
or short phrases that characterize a report and may be used as 
index entries for cataloging the report.    Key words must be 
selected so that no security classification is required.    Identi- 
fiers, such as equipment model designation, trade name, military 
project code name, geographic location, may be used as key 
words but will be followed by an indication of technical con- 
text.   The assignment of links, rules, and weights is optional 

UNCLASSIFIED 
Security Classification 



HEADQUARTERS 

ELECTRONIC SYSTEMS DIVISION 
AIR FORCE SYSTEMS COMMAND 

UNITED STATES AIR.FORCE * 

LAURENCE   O.    HANtCOM    FIELD BEDFORD.    MASSACHUSETTS   017SI 

REPLY   TO 
ATTN  OF:      ESTE 7   July   I965 

•USJBCT; Errata to ESD-TR-220; Verification of Quantitative Maintainability- 
Requirements. 

TO: Distribution 

1. A copy of subject document has been sent to you by separate 
mailing. 

2. Some columnar notation on Page 62,   table entitled:  "Preliminary 
Computation's For Analog Computer Run" were inadvertently omitted.  The 
attached sheet is provided for direct replacement. 

R. M. DeMilia 1 Atch 
Staff Reliability/Maintainability 1.  Errata 
Technical Integration Division 
Technical Requirements & Standards Office 



CD a 
VO 
CO 

CO 
VOX) 

OJ CO 
U"\ 

oobo 
LT 
t^ tS- t- -4 

H VC  t- vO-4 
cv a C-VO 

vo 
LO 

O o" 
LT OJ cc 

vo 
on 

OJ cr <T   <X r-i 
H 

oq co 
OJ 

C-  OJ r- O O on 

OJ 

OOOJ 

© $ 
CO 

aj a 
r-KO 

OJ LO 
LO J" 

CO 
pr 

OJ OJ 
o o 

C- CO 
IT 00 

ir. a 
ir 4 

IP 10 
olo 8 vS 

VO  C   i-i C---4 OJ 

^) 
VO 

H 

CVJVO 
cr 

vO 
l>-o 

IT   CV 
LT ur 

CM 

CO 
VD co 

-4 

cvi t> t> 
LT 

<r  <y i cr (T cr 
LT CVJ 

r-vo 
C J" 
r-VO 
C OJ 

VD 
cr 

VO LO 
VO 

or vp t- 
CT30 

VO 
t-vO $ O" 

C- CO 
oo o 

CVI OJ IT  t~ 

a 
Ci o, 

LT_4 
O  rH 

a 
O  LO 
H 

cv 

LO 
VO 

O ̂  
P: VO 

VO 
O VO 

c^o C-00 
t>00 3 r- CO 

OCCO 
-4 g - OH VO   _ 

C   LOlVQ 

H 

g) © 
^ 

C-CO 
iovo CO 

co 
H 3 aj 

LT CO 
VC  t~ oo 

a- 
o o 

"%- 

(5 3 
"? OJ 

cv 
9 c 

v£ 

co 

OJ oj 

-4 
cr 

(T 

ooo 
a, 

OJ OJ CVI 

-4 

f 
IT 

fc 

62 

5 1 vS #$ 

POJ- 

^ If v3 f5 8 OJ 
OC cvco 

Ivo 
LT VC OJ OJ CVI rr 

OjC 
LT 

cvi 

LP 
-4 00 
VO " 

3 £ $£ Ov 
04 

egvo* 

LO 

h 
^0 

VO s ft 5co cr 
vo 00 8 O 

-3- 9 a tr 

OJ vo CO 

Cr) C 

cv 

t-cO 

o^ J1 

H 
-4V0 

CT- 
oo 

9 •t % 
vo vq-4 s vo 

r-VO 
vo 
LO vo' 

o- 00 

CV LT vo CVI o 

00 
LO|_4 

LTV 

CJ 

VO]vo vS 

6 % 
vo 

© w
b VO 

vo 
VC 
If 

O 

-4VO VD 
cr 

VD VO 
cr S 

LT 

o d 
CM CVJ 

0 s c 
CV-4 88 S 2$ S 

VOjvO 

LT   C 
c g 5 

: 
I 

If 
k. < 

I « 


